1,329 research outputs found

    Competition between supersolid phases and magnetisation plateaux in the frustrated easy-axis antiferromagnet on a triangular lattice

    Full text link
    The majority of magnetic materials possess some degree of magnetic anisotropy, either at the level of a single ion, or in the exchange interactions between different magnetic ions. Where these exchange interactions are also frustrated, the competition between them and anisotropy can stabilize a wide variety of new phases in applied magnetic field. Motivated by the hexagonal delafossite 2H-AgNiO 2, we study the Heisenberg antiferromagnet on a layered triangular lattice with competing first- and second-neighbour interactions and single-ion easy-axis anisotropy. Using a combination of classical Monte Carlo simulation, mean-field analysis, and Landau theory, we establish the magnetic phase diagram of this model as a function of temperature and magnetic field for a fixed ratio of exchange interactions, but with values of easy-axis anisotropy D extending from the Heisenberg (D =0) to the Ising (D=&#8734) limits. We uncover a rich variety of different magnetic phases. These include several phases which are magnetic supersolids (in the sense of Matsuda and Tstuneto or Liu and Fisher), one of which may already have been observed in AgNiO 2. We explore how this particular supersolid arises through the closing of a gap in the spin-wave spectrum, and how it competes with rival collinear phases as the easy-axis anisotropy is increased. The finite temperature properties of this phase are found to be different from those of any previously studied magnetic supersolid.Comment: 25 pages; 29 figures; minor revisions; accepted for publication in Phys. Rev.

    A Monte Carlo study of critical properties of strongly diluted magnetic semiconductor (Ga,Mn)As

    Full text link
    Within a Monte Carlo technique we examine critical properties of diluted bulk magnetic semiconductor (Ga,Mn)As modeled by a strongly diluted ferromagnetic Heisenberg spin-52\frac{5}{2} system on a face centered cubic lattice. We assumed that 5\% of Ga atoms is substituted by Mn atoms and the interaction between them is of the RKKY-type. The considered system is randomly quenched and a double average was performed: firstly, over the Boltzmann probability distribution and secondly - over 2048 configurations related to the quenched disorder. We estimated the critical temperature: Tc=97±6T_c=97\pm6 K, which is in agreement with the experiment. The calculated high value of critical exponent ν\nu seems to point to a possibility of non-universal critical behavior.Comment: 4 pages, 6 figure

    Loop algorithm for classical Heisenberg models with spin-ice type degeneracy

    Full text link
    In many frustrated Ising models, a single-spin flip dynamics is frozen out at low temperatures compared to the dominant interaction energy scale because of the discrete "multiple valley" structure of degenerate ground-state manifold. This makes it difficult to study low-temperature physics of these frustrated systems by using Monte Carlo simulation with the standard single-spin flip algorithm. A typical example is the so-called spin ice model, frustrated ferromagnets on the pyrochlore lattice. The difficulty can be avoided by a global-flip algorithm, the loop algorithm, that enables to sample over the entire discrete manifold and to investigate low-temperature properties. We extend the loop algorithm to Heisenberg spin systems with strong easy-axis anisotropy in which the ground-state manifold is continuous but still retains the spin-ice type degeneracy. We examine different ways of loop flips and compare their efficiency. The extended loop algorithm is applied to the following two models, a Heisenberg antiferromagnet with easy-axis anisotropy along the z axis, and a Heisenberg spin ice model with the local easy-axis anisotropy. For both models, we demonstrate high efficiency of our loop algorithm by revealing the low-temperature properties which were hard to access by the standard single-spin flip algorithm. For the former model, we examine the possibility of order-from-disorder and critically check its absence. For the latter model, we elucidate a gas-liquid-solid transition, namely, crossover or phase transition among paramagnet, spin-ice liquid, and ferromagnetically-ordered ice-rule state.Comment: 12 pages, 11 figures, accepted for publication in Phys. Rev.
    • …
    corecore